Additive Manufacturing (AM), used interchangeably with ‘3D Printing,’ is witnessing explosive growth and adoption. Increasing number of businesses around the world now view additive manufacturing as an essential link in their value chain. AM of metal parts and components is fast gaining prominence for its potential to disrupt traditional supply chains by reducing inventory and digitalising production. The ability to manufacture complex parts using AM is finding widespread application across industries with Aerospace, Medical and Automotive industries predicted to account for 51% of total spend on industrial AM by 2025. This brings the metal AM market to be worth an estimated $10bn by 2030.
Additive Manufacturing processes give designers the flexibility to push the limits of engineering design beyond the constraints of traditional manufacturing methods. However, AM, like any other process, works well when applied thoughtfully. We’ve shortlisted a couple of factors to consider when evaluating Designing for Additive Manufacturing (DfAM):
See also
Testing and Qualification also require a designer’s attention. Organizations such as ASTM, ASME and SAE are working towards establishing design and testing standards for Additive approach. For qualification, most parts that have been re-designed using AM are being qualified using the same criteria that conventionally designed parts are required to meet. However, process standardisation for each make and model of additive machines remains a challenge.
To conclude, Additive Manufacturing is rapidly becoming a tool of choice for businesses and it is finding a variety of use cases across several industries. Designing for Additive Manufacturing is a much sought-after skill set in engineers. The subject is already a part of curriculum in leading research universities across the globe. Partnerships in various forms can help advance the field further along its journey.
No doubt though, this journey would be anything but conventional!